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Abstract

We present a unified heuristic which is able to solve five different variants of the vehicle routing problem: the vehicle routing
problem with time windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle routing problem
(MDVRP), the site-dependent vehicle routing problem (SDVRP) and the open vehicle routing problem (OVRP).

All problem variants are transformed into a rich pickup and delivery model and solved using the adaptive large neighborhood search
(ALNS) framework presented in Ropke and Pisinger [An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transportation Science, to appear]. The ALNS framework is an extension of the large neighborhood
search framework by Shaw [Using constraint programming and local search methods to solve vehicle routing problems. In: CP-98,
Fourth international conference on principles and practice of constraint programming, Lecture notes in computer science, vol. 1520,
1998. p. 417–31] with an adaptive layer. This layer adaptively chooses among a number of insertion and removal heuristics to
intensify and diversify the search. The presented approach has a number of advantages: it provides solutions of very high quality, the
algorithm is robust, and to some extent self-calibrating. Moreover, the unified model allows the dispatcher to mix various variants
of VRP problems for individual customers or vehicles.

As we believe that the ALNS framework can be applied to a large number of tightly constrained optimization problems, a general
description of the framework is given, and it is discussed how the various components can be designed in a particular setting.

The paper is concluded with a computational study, in which the five different variants of the vehicle routing problem are considered
on standard benchmark tests from the literature. The outcome of the tests is promising as the algorithm is able to improve 183 best
known solutions out of 486 benchmark tests. The heuristic has also shown promising results for a large class of vehicle routing
problems with backhauls as demonstrated in Ropke and Pisinger [A unified heuristic for a large class of vehicle routing problems
with backhauls. European Journal of Operational Research, 2004, to appear].
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Most scientific papers in the area of heuristic solution methods for vehicle routing problems target a specific vehicle
routing problem, e.g. vehicle routing problems with time windows (VRPTW). In such papers a heuristic is designed,
implemented and fine-tuned to fit this particular problem type. Only a few papers (see e.g. [1,2]) consider heuristics
that “out-of-the-box” can be used to solve several problem types. We believe that general vehicle routing heuristics are
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an important research area as such heuristics are needed for real life problems, in which the transportation needs of
different companies often are different and thus call for various types of vehicle routing problems.

The heuristic in this paper is applied to five different problems: the VRPTW, the capacitated vehicle routing problem
(CVRP), the multi-depot vehicle routing problem (MDVRP), the site-dependent vehicle routing problem (SDVRP)
and the open vehicle routing problem (OVRP). In the CVRP one has to deliver goods to a set of customers with
known demands on minimum-cost vehicle routes originating and terminating at a depot. The vehicles are assumed to
be homogeneous and having a certain capacity. In some versions of the CVRP one also has to obey a route duration
constraint that limits the lengths of the feasible routes. The VRPTW extends the CVRP by associating time windows
with the customers. The time window defines an interval during which the customer must be visited. The OVRP is
closely related to the CVRP, but contrary to the CVRP a route ends as soon as the last customer has been served as the
vehicles do not need to return to the depot. The MDVRP extends the CVRP by allowing multiple depots. The SDVRP
is another generalization of the CVRP in which one can specify that certain customers only can be served by a subset
of the vehicles. Furthermore, vehicles do not need to have the same capacity in the SDVRP. In the CVRP, MDVRP and
SDVRP one seeks to minimize the total traveled distance, whereas in the OVRP and VRPTW, the first priority is to
minimize the number of vehicles and minimizing the traveled distance is the second priority. The choice of objective
is not an intrinsic feature of the problems, but just the tradition in the metaheuristic literature. Most exact methods and
some metaheuristics for the VRPTW minimize total traveled distance instead of minimizing number of vehicles used.

All problem types are transformed to a rich pickup and delivery problem with time windows (RPDPTW) and are
solved using the adaptive large neighborhood search (ALNS) framework introduced by [3,4]. The heuristic presented
in the two aforementioned papers has been reused, with some small improvements (summarized in Section 5), to solve
the five problem types considered in this paper.

In the RPDPTW, we have a number of requests to be carried out by a given set of vehicles. Each request consists
of picking up a quantity of goods at one location and delivering it to another location. The objective of the problem
is to find a feasible set of routes for the vehicles so that all requests are serviced, and such that the overall travel
distance is minimized. A feasible route of a vehicle must start at a given location, service a number of requests such
that the capacity of the vehicle is not exceeded, and finally end at a given location. A pickup or delivery must take place
within a given time window. Each request has an associated pickup precedence number, and a delivery precedence
number. A vehicle must visit the locations in nondecreasing order of precedences (see e.g. [5] for various applications
of precedence constraints). Since not all vehicles may be able to service all requests (e.g. due to their physical size
or the absence of some cooling compartments) we need to ensure that every request is serviced by a given subset of
vehicles. Between any two locations we have an associated, nonnegative distance and travel time. It is assumed that
travel times satisfy the triangle inequality. This assumption implies that any removal of requests from a feasible route
will keep the route feasible with respect to the imposed time windows.

The five vehicle routing problems considered in the present paper have all been intensively studied in the literature.
The two best known problems are the VRPTW and the CVRP. The VRPTW has been the target of extensive research
and almost any type of metaheuristic has been applied to the problem. For recent surveys on the state of the art in
VRPTW research we recommend the survey by Cordeau et al. [6] that describes both exact and heuristic methods,
and the survey by Bräysy and Gendreau [7] that focuses on metaheuristics. It is hard to single out a few VRPTW
metaheuristics as the number of proposed heuristics is huge, and no heuristic dominates all the other heuristics in all
aspects. We would, however, like to mention the metaheuristic by Mester and Bräysy [8] as it has achieved outstanding
results on larger VRPTW instances with between 200 and 1000 customers. For the smaller VRPTW instances like the
Solomon data set, some of the best heuristics in terms of solution quality achieved are the large neighborhood search
by Bent and Van Hentenryck [9] and the hybrid genetic algorithm by Homberger and Gehring [10].

Solving the VRPTW to optimality has also received much attention. The current state of the art exact methods are
proposed by Kallehauge et al. [11], Irnich and Villeneuve [12] and Chabrier [13], and all follow the branch-and-price
framework. The two first mentioned approaches also strengthen the obtained lower bound by adding valid inequalities
to the LP formulation. The size of the instances that consistently can be solved to optimality is rather limited as unsolved
instances with 50 customers exist, but some large-scale instances can be solved. For example, Kallehauge et al. [11]
report that a 1000 customer instance has been solved. Solving problems of this size is only possible by current
techniques if the instance has a certain structure and the time constraints are very tight. These observations justify
the research into heuristics for the VRPTW as industrial routing problems demand robust algorithms for large-sized
instances.
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The CVRP literature is also vast. Classic heuristics for the problem have been surveyed by Laporte and Semet
[14], and metaheuristics have been surveyed by Gendreau et al. [15] and more recently by Cordeau et al. [16]. CVRP
heuristics have typically been tested on 14 instances containing between 50 and 199 customers. In the early 1990s very
good metaheuristics for the CVRP were developed such as parallel tabu search by Taillard [17]. Most of the solutions
to the 14 classic instances found back then have still not been improved. More recently, some larger instances have
been introduced containing between 240 and 1200 customers [18,19]. These new instances seem to have spurred a new
interest into metaheuristics for the CVRP as indicated in the survey by Cordeau et al. [16].

Until recently, exact methods for the CVRP were dominated by branch-and-cut methods. One of the best branch-
and-cut algorithms for the CVRP was developed by Lysgaard et al. [20]. Recent research results indicate that branch-
and-cut-and-price algorithms are a more promising approach as shown by Fukasawa et al. [21]. For the CVRP, the
largest problem that has been solved to optimality contains 135 customers.

The OVRP is a variant of the CVRP that has received less attention. The problem appears in various distribution
problems, in which the vehicle simply stops after the last delivery. The problem was introduced by Sariklis and Powell
[22] and they proposed a two-phase cluster first-route second heuristic. Recently, tabu search heuristics were proposed
by Fu et al. [23] and Brandão [24].

Tabu search heuristics for the MDVRP have been proposed by Renaud et al. [25] and Cordeau et al. [1]. The last
paper deserves special attention as it describes a general heuristic that also solves periodic vehicle routing problems
(PVRP) and periodic traveling salesman problems. Earlier, Chao et al. [26] proposed a record-to-record improvement
heuristic for the MDVRP.

The SDVRP was first studied by Nag et al. [27] who developed several simple heuristics for the problem. Chao et al.
[28] developed a more advanced heuristic and constructed several new test instances. Cordeau and Laporte [29] showed
that the problem could be seen as a special case of the PVRP and they presented computational results obtained by
solving the problem using their PVRP tabu search heuristic.

The main contribution of this paper is to describe a general ALNS heuristic, that is able to solve all the above
variants of the VRP problem. The computational results are promising as the ALNS, for the large-scale VRPTW
instances suggested by Gehring and Homberger [30], on average use less vehicles compared to competing heuristics,
and the method becomes even more attractive compared to other heuristics as the problem size increases. For the
OVRP, MDVRP and SDVRP we are able to improve a large number of best known solutions. The ALNS heuristic is
comparable to most recently proposed heuristics for the CVRP, but it is surpassed by the very best heuristic for the
problem type.

Due to the promising results of ALNS, we give a general description of the paradigm to make it easier to adapt the
framework to other problem types. Various strategies for designing construction and removal heuristics are discussed.

In Section 2, we give a formal mathematical definition of the RPDPTW and in Section 3, we describe how the
considered problem variants are transformed into the RPDPTW. In Section 4, we give a general presentation of the
ALNS algorithm forming the core of our solution approach. Section 5 describes how the general framework has been
adapted to solve the RPDPTW. Section 6 presents a number of computational experiments which document that the
proposed heuristic does not perform worse than state-of-the-art heuristics specialized to solve each problem variant.
The paper is concluded in Section 7.

2. Formal problem definition

We now present a mathematical formulation of the RPDPTW problem. The mathematical model is used to describe
the heuristic in details in later sections and to describe how the consideredVRP variants are transformed to the RPDPTW.

Following the terminology of Desaulniers et al. [31], a problem instance of the pickup and delivery problem contains
n requests and m vehicles. The problem is defined on a graph where P = {1, . . . , n} is the set of pickup nodes, and
D ={n+ 1, . . . , 2n} is the set of delivery nodes. Request i is represented by node i and i +n. K ={1, . . . , m} is the set
of all vehicles. Let Pk ⊆ P and Dk ⊆ D be the set of pickups and deliveries that can be served by vehicle k. Since a
request is serviced by the same vehicle we may assume that i ∈ Pk ⇔ i +n ∈ Dk , i.e. that both the pickup and delivery
can be serviced by vehicle k. Define N =P ∪D and Nk =Pk ∪Dk . Let �k =2n+k, k ∈ K and �′

k =2n+m+k, k ∈ K

be the nodes that represent the start and end terminals of vehicle k. The directed graph G= (V , A) consists of the nodes
V = N ∪ {�1, . . . , �m} ∪ {�′

1, . . . , �
′
m} and the arcs A = V × V . For each vehicle we have a sub-graph Gk = (Vk, Ak),
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where Vk = Nk ∪ {�k} ∪ {�′
k} and Ak = Vk × Vk. For each edge (i, j) ∈ A we assign a distance dij �0 and a travel time

tij �0. Again, it is assumed that the travel times satisfy the triangle inequality, i.e. tij � til + tlj for all i, j, l ∈ V . We
assign a service time si and a time window [ai, bi] to each node i∈ V . The service time represents the time needed for
loading and unloading and the time window indicates when the visit at the particular site must start; a visit to node i
can only take place between time ai and bi . A vehicle is allowed to arrive to a site before the start of the time window
but it has to wait until the start of the time window before the visit can be performed. For each node i ∈ N , we define
li to be the amount of goods that should be loaded onto the vehicle at the particular node. We have that li �0 for i ∈ P

and li = −li−n for i ∈ D. Each vehicle k ∈ K has a certain capacity Ck . Each node has assigned a precedence number
�i . Nodes with low precedence must always be visited before nodes with higher precedence.

Each vehicle k should follow a legal route from its start terminal �k to its destination terminal �′
k . A legal route r is a

simple (loop-free) path

r = (�k = v1, v2, . . . , vh = �′
k) (1)

satisfying the precedences and time windows at the customers, the capacity of the vehicle, and ensuring that a pickup
takes place before a delivery, and that only requests serviceable by vehicle k are carried out.

More formally, we demand that a vehicle only visits nodes that can be serviced by the vehicle, i.e.

vi ∈ Nk, i = 2, . . . , h − 1. (2)

A pickup–delivery pair must be served by the same vehicle, and the pickup must take place before the delivery, hence
we have

i�j, vi ∈ Pk, vj ∈ Dk, vj = vi + n. (3)

Precedences should be obeyed along the route, this is ensured by the constraints

i�j, �vi
��vj

. (4)

To ensure that time windows are satisfied, we introduce Si ∈ R+
0 to denote when the vehicle starts the service at site

vi . We then have the constraints

avi
�Si �bvi

, i = 1, . . . , h, (5)

Si+1 �Si + si + tvi ,vi+1 , i = 1, . . . , h − 1, (6)

a�k
�S1 �b�k

, (7)

a�′
k
�Sh �b�′

k
, (8)

where [a�k
, b�k

] is the time window of terminal �k and [a�′
k
, b�′

k
] is the time window of terminal �′

k . Finally, the capacity

of the vehicle should be respected throughout the path. For this purpose, we introduce Li ∈ R+
0 to denote the load of

the vehicle at node i after serving node i. Then we have

Li �Ck, i = 1, . . . , h, (9)

Li+1 = Li + li+1, i = 1, . . . , h − 1, (10)

L1 = 0, (11)

Lh = 0. (12)

The travel cost of a given route r is

cr =
h−1∑
i=1

dvi ,vi+1 . (13)

Situations may occur in which some requests cannot be serviced by the available vehicles. To model this situation
we create n dummy routes, consisting of a single request. These routes do not make use of any vehicles but they have
a large cost, denoted �. Requests that are not served by a vehicle are said to be located in the request bank.

The whole problem can now be formulated as follows: let R be the set of all feasible routes. The boolean matrix (�jr )

for r ∈ R and j = 1, . . . , n is used to indicate whether request j is serviced using route r . The boolean matrix (�kr ) for
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r ∈ R and k = 1, . . . , m is used to indicate whether the route r is carried out by vehicle k. Using binary variables xr to
indicate whether route r is used in the solution we get the following model:

min f (x) =
∑
r∈R

crxr , (14)

s.t.
∑
r∈R

�jrxr = 1, j = 1, . . . , n, (15)

∑
r∈R

�krxr = 1, k = 1, . . . , m, (16)

xr ∈ {0, 1}, r ∈ R. (17)

Note that a dummy route is not assigned to any vehicle, that is, for any dummy route r we have that �kr=0, ∀k=1, . . . , m.

3. Problem transformations

The heuristic in this paper is applied to five different problems—VRPTW, CVRP, OVRP, MDVRP, SDVRP—which
all are transformed to a RPDPTW. The conversions which will be described in the following paragraphs are extensions
of the transformations presented by Ropke and Pisinger [4] for solving VRP problems with backhauls.

3.1. Vehicle routing problem with time windows

In order to transform a VRPTW instance to a RPDPTW instance we map every customer in the VRPTW to a request
in the RPDPTW. Such a request consists of a pickup at the depot and a delivery at the customer site. The amount of
goods that should be carried by the requests is equal to the demand of the corresponding customer. The time window
of the pickup is set to [ad, ad], where ad is the start of the time window of the depot in the VRPTW and its service time
is set to zero. The time window and service time of the delivery are copied from the corresponding customer in the
VRPTW. In order to avoid routes that return to the depot for restocking we let all pickups and deliveries have precedence
zero and one, respectively. All vehicles in the RPDPTW have the same start and end terminals corresponding to the
depot in the VRPTW. Distances and travel times in the RPDPTW are set in the natural way.

3.2. Capacitated vehicle routing problem

A CVRP instance can easily be transformed to a VRPTW instance. This can, for example, be done by setting all travel
and service times to zero and all time windows to [0,0]. If the CVRP contains a route duration constraint then travel
times and durations should be set as in the CVRP. All time windows (including the ones at the end terminals) should
be set to [0, D], where D is the route duration. The VRPTW is transformed to a RPDPTW as described in Section 3.1.

3.3. Site-dependent vehicle routing problem

In the SDVRP a customer may only be serviced by a given subset of the vehicles, typically because the access paths
to the node do not allow given vehicles to pass, or because specific facilities are demanded in the vehicle (e.g. a freezing
compartment).

The SDVRP is easily modeled as a RPDPTW by using the transformation from CVRP to RPDPTW and noting that
the RPDPTW allows us to specify the pickups Pk and deliveries Dk that can be carried out by vehicle k.

3.4. Open vehicle routing problem

The OVRP is very close to the CVRP. The difference between the two problems is that in the OVRP the vehicles do
not have to return to the depot. Thus, an OVRP can be solved as an asymmetric CVRP by setting distances and travel
times from every customer to the depot to zero.
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The travel times in the resulting RPDPTW do not satisfy the triangle inequality, but our method is able to handle
the problems anyway since tij � til + tlj is only violated when l is an end terminal. Our only reason for assuming that
the triangle inequality is satisfied for the travel times is that we have to avoid situations in which the removal of one
or more requests causes the travel time to increase. As the node sequence i → l → j , where l ∈ {�′

1, . . . , �
′
m} never

occurs in a valid route this violation of the triangle inequality does not cause any problems.

3.5. Multi-depot vehicle routing problem

In the MDVRP each customer may be serviced by a vehicle originating at any of the available depots. Even though
our underlying RPDPTW model supports multiple depots, it requires that each request is assigned to a specific depot.
In general, this is a hard optimization problem of its own which needs to be handled together with the routing problem.
Hence, we use the following transformation.

Create a dummy base location where all routes start and end and where all ordinary requests are picked up. Also
create a dummy request for each vehicle k in the problem. The pickup and delivery locations of these requests are
located at the depot of the corresponding vehicle. A dummy request has demand zero, it does not have any service time
and it can be served at any time. The set Nk of each vehicle k contains all ordinary requests and the dummy request
corresponding to the vehicle. In this way, we ensure that each vehicle will carry precisely one dummy request.

The precedences �i of a pickup and a delivery corresponding to an ordinary request are set to zero and two,
respectively. The precedence of the pickup and delivery of the dummy requests are set to one and three, respectively.
This ensures that all ordinary deliveries will be surrounded by the pickup and delivery of a dummy request. The distance
and travel time between a pickup of an ordinary request and any other location is set to zero. All other distances and
travel times are set as defined by the original MDVRP.

In a solution to the RPDPTW that serves all requests we know that each vehicle will begin at a start terminal located
at the dummy base location, then perform a number of pickups and then go to the pickup of the dummy request. Next,
the ordinary deliveries will be served and the vehicle will return to the delivery of the dummy request and then to the
end terminal of the route. Before starting the pickup of the dummy request and after the delivery of it all travel times and
distances will be zero. Furthermore, travel times and distances are accumulated correctly while carrying the dummy
request.

While solving MDVRP problems the cost of dummy routes � must be set to a sufficiently large number such that it
will never be profitable to leave a dummy request in the request bank.

4. Adaptive large neighborhood search

We will now describe the ALNS framework used in the present paper. We believe that ALNS can be applied to a large
class of difficult optimization problems, hence in the following we consider an optimization problem in the general IP
form:

min{f (x) : Ax�b, x ∈ Zn}. (18)

ALNS is a local search framework in which a number of simple algorithms compete to modify the current solution. In
each iteration an algorithm is chosen to destroy the current solution, and an algorithm is chosen to repair the solution.
The new solution is accepted if it satisfies some criteria defined by the local search framework applied at the master
level.

To be more formal, we extend the domain of each variable xi to Z∪{⊥}, where ⊥ means undefined.A destroy heuristic
chooses at most q variables which are assigned the value ⊥. A repair heuristic assigns feasible values xi ∈ Z to the q
variables.

The ALNS framework is an extension of the large neighborhood search presented by Shaw [32], where a large
collection of variables are modified in each iteration. In ALNS, the neighborhoods are searched by simple and fast
heuristics. ALNS is also based on the Ruin and Recreate paradigm presented by Schrimpf et al. [33], or the Ripup
and Reroute paradigm applied in [34]. In each iteration the current solution is partially destroyed and then repaired
using some heuristics. ALNS also has similarities with very large scale neighborhood search (VLSN) presented by
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VNS

N∗ 

ALNS
Nk
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N3

N5 N4
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N2
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N2

Fig. 1. Illustration of neighborhoods used by VNS and ALNS. VNS typically operates on one type of neighborhood with variable depth while
ALNS operates on structurally different neighborhoods N1, . . . , Nk defined by the corresponding search heuristics. All neighborhoods N1, . . . , Nk

in ALNS are a subset of the neighborhood N∗ defined by modifying q variables.

Ahuja et al. [35]. In VLSN, the algorithm operates on very large neighborhoods chosen in a way so that they can still
be searched efficiently.

Variable neighborhood search (VNS) was presented by Hansen and Mladenovic [36]. VNS makes use of a param-
eterized family of neighborhoods, typically obtained by using a given neighborhood with variable depth. When the
algorithm reaches a local minimum using one of the neighborhoods, it proceeds with a larger neighborhood from the pa-
rameterized family. When the VNS algorithm gets out of the local minimum it proceeds with the smaller neighborhood.
On the contrary, ALNS operates on a predefined set of large neighborhoods corresponding to the destroy (removal) and
repair (insertion) heuristics. The neighborhoods are not necessarily well-defined in a formal mathematical sense—they
are rather defined by the corresponding heuristic algorithm. The difference between VNS and ALNS is illustrated in
Fig. 1. In the sections that follow, we will distinguish between a neighborhood and the heuristic searching it.

Instead of viewing the ALNS heuristic as a sequence of destroy and repair operations one can alternatively see it
as a sequence of fix and optimize operations. The fix operation selects a number of variables that are fixed at their
current value; the optimize operation seeks to find a near-optimal solution that respects the fixed variables, that is, only
nonfixed variables can be changed. After the optimization operation, all variables are unlocked again. The fix operation
is analogous to the destroy operation and the optimize operation is analogous to the repair operation. The fix/optimize
view might be helpful when applying the heuristic to problems where the destroy and repair operations do not seem
intuitive.

4.1. Outline of algorithm

ALNS can be based on any local search framework, e.g. simulated annealing, tabu search or guided local search. The
general framework is outlined in Fig. 2, where lines 2–8 form the main loop of the local search framework at the master
level. Implementing a simulated annealing algorithm is straightforward as one solution is sampled in each iteration of
the ALNS. A simple tabu search could, for example, be implemented by randomly sampling a number of candidate
solutions and choosing the best nontabu solution.

In each iteration of the main loop, we choose one destroy and one repair neighborhood (line 3). An adaptive layer
stochastically controls which neighborhoods to choose according to their past performance (score). The more a neigh-
borhood Ni has contributed to the solution process, the larger score �i it obtains, and hence it has a larger probability
of being chosen.

The adaptive layer uses roulette wheel selection for choosing a destroy and a repair neighborhood. If the past score
of a neighborhood i is denoted �i and we have � neighborhoods, then we choose neighborhood Nj with probability

�j∑�
i=1 �i

.

Note that the destroy and repair neighborhoods are selected independently, and hence two separate roulette wheel
selections are performed.
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Adaptive Large Neighborhood Search

1  Construct a feasible solution x ; set x* := x

2  Repeat

3  Choose a destroy neighborhood N − and a repair neighborhood
    N + using roulette wheel selection based on previously
    obtained scores { πj}
4  Generate a new solution x' from x using the heuristics
    corresponding to the chosen destroy and repair neighborhoods

5  If x' can be accepted then set x : = x'

6  Update scores πj of N − and N +

7  If f (x) <  f (x∗) set x∗  :=x

8  Until stop criteria is met

9  Return x ∗ 

Fig. 2. Outline of the ALNS framework.

In most applications the neighborhoods are searched by fast heuristics, hence it is reasonable to assume that they
are equally fast. But if some heuristics are significantly slower than others, one may normalize the score �i of a
neighborhood with a measure of the time consumption ti of the corresponding heuristic. This ensures a proper trade-off
between time consumption and solution quality.

In line 4 of the ALNS algorithm, we first destroy the current solution x using a heuristic searching the neighborhood
N− and then repair the solution using a heuristic corresponding to neighborhood N+. It can be advantageous to use
noising or randomization in the destroy and repair heuristics to obtain a proper diversification. In traditional local
search heuristics the diversification is controlled implicitly by the local search paradigm (accept ratio, tabu list, etc.),
but since we use large neighborhoods which are searched by simple heuristics, it is not sufficient to have a diversification
operator at the master level. We also need a diversification operator at the sub-level to avoid stagnating search processes
where the destroy and repair neighborhoods keep performing the same modifications to a solution.

Finally, in line 6 we update the scores �i of the neighborhoods. A number of criteria can be used to measure how
much a neighborhood contributes to the solution process: new best solutions are obviously given a large score, but also
not previously visited solutions are given a score. Depending on the local search framework used on the master level,
one may also give specific scores to accepted solutions e.g. in a simulated annealing framework. Since each step of
the ALNS heuristic involves two neighborhoods (a destroy and a repair neighborhood), the score obtained in a given
iteration is divided equally between them.

Every M iterations of theALNS algorithm, the scores �i are reset, and the probabilities for choosing the neighborhoods
are recalculated. Each neighborhood is assigned a minimum probability for being chosen to ensure that statistical
information about its performance can be collected. The probabilities for choosing a neighborhood can also be a
weighted sum of the score during the last M iterations, and the overall score since the beginning of the algorithm.

4.2. Designing an ALNS algorithm

In order to design an ALNS algorithm for a given optimization problem one needs to

• Choose a number of fast construction heuristics which are able to construct a full solution given a partial solution (a
solution where some variables are set to ⊥ and some have a real value).

• Choose a number of destroy heuristics. It might be worthwhile to choose destroy heuristics that are expected to work
well with the chosen construction heuristics, but it is not necessary.

• Choose a local search framework at the master level.

In each iteration the heuristic corresponding to a destroy neighborhood should remove a given number q of variables.
The destroy neighborhoods (N−) should be a proper mix of neighborhoods which can intensify and diversify the search.
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To diversify the search, one may randomly choose q decision variables, i.e. using a random removal neighborhood. To
intensify the search one may try to remove q “critical” variables, i.e. variables having a large cost or variables spoiling
the current structure of the solution (e.g. edges crossing each other in a Euclidean traveling salesman problem). This is
known as worst removal or critical removal. Concrete examples on random removal and worst removal neighborhoods
in a VRP context are given in Sections 5.1.1–5.1.2.

One may also choose a number of related variables that are easy to interchange while maintaining feasibility of
the solution. This related removal neighborhood was introduced by Shaw [32]. More formally, we can measure the
relatedness rij of two variables xi and xj by the deviation of the corresponding coefficients in the constraint matrix A
in problem (18). The smaller rij the more related are variables xi and xj . How exactly rij should be defined depends
on the concrete problem at hand, and one may even have several simultaneous neighborhoods defined by various
choices of the relatedness measure (rij ). In order to choose the q most related variables, one needs to solve the NP-hard
dispersion-sum problem given by

minimize
n∑

i=1

n∑
j=1

rij xixj ,

subject to
n∑

j=1

xj = q,

xj ∈ {0, 1}, j = 1, . . . , n. (19)

A greedy heuristic for this problem running in O(n3) was presented in [37] together with a more time-consuming
exact algorithm. If n is large, it may be too time-consuming even to compute the whole matrix (rij ) and one will
instead choose related variables according to some heuristics. Shaw [32] presented an algorithm running in O(qn) time
by initially selecting a variable at random, and then repeatedly selecting an already selected variable i and finding a
variable j which minimizes rij and adding j to the set of chosen variables. An alternative heuristic is based on a modified
Kruskal’s algorithm for the minimum spanning tree problem, using rij as edge weights, which stops when a connected
component with q or more elements has been constructed. The variables in this component are set to ⊥. The worst-case
running time of this algorithm is O(n2 log n) as we have n2 edges in Kruskal’s algorithm. Ropke and Pisinger [3] used
a modified version of this algorithm in the VRP for splitting requests on a route into two strongly connected subsets.
It should be noted that solving the dispersion sum problem (19) to optimality seldom would be a good idea even if
it could be done in a very short time. If rij is independent of the current solution the destroy neighborhood obtained
by solving the dispersion sum problem to optimality would always assign ⊥ to the same set of variables. Concrete
examples on various related removal neighborhoods are given in Sections 5.1.3–5.1.5.

Following the same idea as in related removal one may choose a number of variables having small coefficients in the
resource constraints in (18), as these are generally easy to interchange and loosely speaking can fill up unused resource
constraints. We denote this strategy small removal.

Finally, one may use history-based removal where the q variables are chosen according to some historical information
as presented in [3]. The historical information could, for example, count how often setting a given variable (or set of
variables) to a specific value leads to a bad solution. One may then try to remove variables that currently are assigned an
improper value, based on the historical information. Variants of the history-based removal neighborhood are discussed
in Sections 5.1.6–5.1.7.

Repair neighborhoods (N+) are typically based on concrete well-performing heuristics for the given problem. These
heuristics can make use of variants of the greedy paradigm, e.g. performing the locally best choice in each step, or
performing the least bad choice in each step. An alternative variant of the greedy paradigm is to set all variables
to their upper bound in problem (18), and repeatedly decrease the most expensive variable until a feasible solution
is obtained. The repair heuristics can also be based on approximation algorithms or exact algorithms which have
been relaxed to obtain faster solution times at the cost of solution quality. Shaw [32] and Bent and Van Hentenryck
[9] proposed more expensive algorithms like searching N+ based on relaxed branch-and-bound methods. Although
ALNS mainly is intended to use cheap heuristics, more expensive search methods can be used if the scores of the
corresponding neighborhoods are normalized with respect to the time consumption. In the context of VRP problems,
repair neighborhoods are considered in more detail in Section 5.2 discussing both simple greedy approaches and
variants of regret heuristics.
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Some optimization problems can be split into a number of sub-problems, where each sub-problem can be solved
individually. Such problems include the bin packing problem in which a number of bins are to be filled, or the vehicle
routing problem in which a number of routes are to be constructed. For such problems, one should decide whether
the sub-problems should be solved one by one (sequential heuristics) or all sub-problems should be solved at the
same time (parallel heuristics). Sequential heuristics are easier to implement but may have the disadvantage that the
last sub-problem solved is left with variables that do not fit well together. This is to some extent avoided in parallel
heuristics.

A natural extension to the ALNS framework is to have coupled neighborhoods. In principle one may, for each
destroy neighborhood N−

i , define a subset Ki ⊆ {N+} of repair neighborhoods that can be used with N−
i . The roulette

wheel selection of repair neighborhoods will then only choose a neighborhood in Ki if N−
i was chosen.

As a special case, one may have Ki = ∅ meaning that the neighborhood N−
i takes care of both the destroy and

repair steps. One could use an ordinary local search heuristic to compete with the other destroy and repair neigh-
borhoods, ensuring that a thorough investigation of the solution space close to the current solution is made from
time to time.

For some problems it may be sufficient to have a number of destroy and repair heuristics that are selected randomly
with equal probability, that is without the adaptive layer. We will denote such a heuristic a large multiple-neighborhood
search (LMNS). The LMNS heuristics share the robustness of the ALNS heuristics, while having considerably fewer
parameters to calibrate.

4.3. Properties of the ALNS framework

The ALNS framework has several advantages. For most optimization problems we already know a number of well-
performing heuristics which can form the core of an ALNS algorithm. Due to the large neighborhoods and diversity of
the neighborhoods, the ALNS algorithm will explore large parts of the solution space in a structured way. The resulting
algorithm becomes very robust, as it is able to adapt to various characteristics of the individual instances, and seldom
is trapped in a local minima.

ALNS is particularly well suited for tightly constrained problems, in which small neighborhoods are not sufficient
to escape a local minima or certain areas of the solution space. In such problems, the large neighborhood search makes
it possible to change many variables each time to reach new feasible solutions.

The calibration of the ALNS algorithm is quite limited as the adaptive layer automatically adjusts the influence
of each neighborhood used. It is still necessary to calibrate the individual sub-heuristics used for searching the
destroy and repair neighborhoods, but one may calibrate these individually or even use the parameters used in existing
algorithms.

In the design of most local search algorithms the researcher has to choose between a number of possible neighbor-
hoods. In ALNS, the question is not “either-or” but rather “both-and”. As a matter of fact, our experience is that the
more (reasonable) neighborhoods the ALNS heuristic makes use of, the better it performs [3].

5. ALNS applied to the RPDPTW

We will now describe how the general ALNS framework has been adapted to the RPDPTW problem. The “variables”
in the ALNS framework correspond to requests in the RPDPTW. A destroy neighborhood N− consists of removing q
requests from the existing routes and assigning them to the request bank.

The heuristic described in this section is almost identical to the heuristic used to solve a large class of vehicle
routing problems with backhauls [4]. One more destroy heuristic has been added (see Section 5.1.5) and the formula
determining the number of requests to remove has been changed (see Section 6.1.1).

For completeness, we will describe the various heuristics associated with the destroy neighborhoods in Section 5.1.
A repair neighborhood N+ inserts requests from the request bank into one or more legal routes. The associated insertion
heuristics are described in Section 5.2. The local search framework used at the master level is simulated annealing to
be described in Section 5.3. Section 5.4 describes the noising method used to diversify the search of the heuristics.
Finally, the scheme used for adjusting the weights in the roulette wheel selection is described in Section 5.5.
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5.1. Request removal

TheALNS heuristic for the RPDPTW makes use of seven different removal heuristics, each searching a given removal
neighborhood N−. The heuristics take as input a given solution x and output q requests that have been removed from
the routes.

5.1.1. Random removal
The simplest removal heuristic, random removal, selects q requests at random and removes them from the

solution. This obviously has the effect of diversifying the search.

5.1.2. Worst removal
The purpose of the worst removal heuristic is to choose a number of requests that are very expensive, or which

somehow spoil the structure of the current solution. In the RPDPTW it seems reasonable to try to remove requests with
high cost and insert them at another place in the solution to obtain a better solution value.

Given a request i and a solution x, define f ′(x, i) as the cost of the solution where request i has been removed
completely (it is not even in the request bank). Define �f−i as �f−i = f (x) − f ′(x, i).

The worst removal heuristic now repeatedly chooses a new request i, having the largest cost �f−i until q
requests have been removed. The removal heuristic is randomized, the randomization is controlled by the parameter p.
If p is small, the most expensive request is selected, while less expensive requests may be chosen for larger values of
p with a probability that decreases with the cost �f−i . We refer to [3] for additional details.

5.1.3. Related removal
The purpose of the related removal heuristic is to remove a set of requests that in some sense are related and

hence easy to interchange. For the RPDPTW, we define the relatedness rij of two orders i and j solely by the distance
between the requests, as introduced by Ropke and Pisinger [3]. Since each request i consists of a pickup node i and a
delivery node i + n we get the expression

rij = 1

D
(d ′(i, j) + d ′(i, j + n) + d ′(i + n, j) + d ′(i + n, j + n)), (20)

where the distance measure d ′(u, v) between two nodes in this context is defined as

d ′(u, v) =
{

duv if u and v are not located at a terminal,
0 if u or v is located at a terminal.

(21)

The motivation for neglecting the distance from a terminal is that the terminal is going to be visited in any case, and
hence should not contribute to the relatedness measure of two requests.

The denominator D is set to the number of nonzero terms in Eq. (20), i.e. the number of pickups and deliveries taking
place at a site different from a terminal. Hence, if all nodes are different from a terminal we set D := 4 while if both
requests have a pickup at a terminal we set D := 1.

The relatedness measure is used to remove customers as described in Shaw [32]. The algorithm initially selects a
request i by random. Then it repeatedly chooses an already selected request j and selects a new request which is most
related to j. The algorithm stops when q requests have been chosen. Like in the worst removal heuristic (Section
5.1.2) the process is controlled by a randomization parameter p. If p is zero, the most related request is always chosen
in the inner loop. If p > 0 a less related request may be chosen, where the probability of choosing a request decreases
with the relatedness measure rij and increases with p. The algorithm is described in more detail in [3].

5.1.4. Cluster removal
The cluster removal heuristic is a variant of the related removal heuristic in which we try to remove

clusters of related requests from a few routes. As a motivation, consider a route where the requests are grouped into two
geographical clusters. When removing requests from such a route it is often important to remove one of these clusters
entirely as the insertion methods otherwise would be prone to insert the removed requests back into the route. The
related removal heuristic from Section 5.1.3 has a tendency to leave requests from such a cluster on the original
route so, therefore, we propose a heuristic that seeks to remove an entire cluster at once.
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Although, we could use the same algorithm as above for selecting related requests—just restricted to a single
route—we have chosen to use a heuristic based on strongly connected components, as described in Section 4.2. We
simply run Kruskal’s algorithm for the minimum spanning tree problem (using rij for the edge distances) and terminate
the algorithm when two connected components remain. One of these clusters is chosen at random and the requests
from the chosen cluster are removed. If less than q requests have been selected, we randomly pick a removed request
and choose a request from a different route, that is most related to the given request. The route of the new request is
partitioned into two clusters and so the process continues until the desired number of requests has been removed. We
refer the reader to Ropke and Pisinger [4] for more details.

5.1.5. Time-oriented removal
The time oriented removal is another variant of the related removal heuristic. In this heuristic, we

try to remove requests that are served at roughly the same time as we hope that these requests are easy to interchange.
The heuristic works as follows. A request r̃ is chosen at random and the B requests that are closest to r̃ (according

to the distance rij defined in (20)) are marked. We define a time-oriented distance between two requests as

�tij = |tpi
− tpj

| + |tdi
− tdj

|, (22)

where tpi
and tdi

are the times of the pickup and the delivery of request i in the current solution. Among the B marked
requests we select the q−1 that are closest to r̃ according to �tij . The process is controlled by a randomization parameter
p like in the related removal heuristic described in Section 5.1.3. These requests are removed together with r̃ .

Before running the removal heuristic we first select a subset of all requests that are geographically close to the
chosen request, as we observed that this selection made the heuristic perform better on large instances. The reason
for this is that if the heuristic only considered requests that are close to the chosen request time-wise, then only one
or two requests would be removed from each route in the larger problems, and this makes it hard to make any major
improvements to the solution.

5.1.6. Historical node-pair removal
It is well-known from several metaheuristics that using historical information in the local search (e.g. the long term

memory or the aspiration level in tabu search) may improve the performance of a local search algorithm. In the present
heuristic, we look at the historical success of visiting two nodes right after each other in a route, while the heuristic in
Section 5.1.7 looks at the historical success of servicing two requests by the same vehicle.

The historical node-pair removal heuristic (denoted the neighbor graph removal heuristic in [4]) makes
use of both historical information and the present solution when removing the requests. With each pair of nodes (u, v) ∈
A we associate a weight f ∗

(u,v) which indicates the best solution value found so far, in a solution which used edge (u, v).
Initially f ∗

(u,v) is set to infinity, and each time a new solution is found, we update the weights f ∗
(u,v) of all edges used

in the given solution, for which the edge weight can be improved.
We may use the edge weights f ∗

(u,v) to remove requests that seem to be misplaced. The removal heuristic simply
calculates the cost of a request (i, i + n) in the current solution by summing the weights of edges incident to i and
i + n. The most costly request is removed, and the process is repeated until q requests have been extracted. To ensure
some variation in the extracted requests, randomness is introduced in the removal process.

5.1.7. Historical request-pair removal
An alternative history-based removal heuristic can make use of the historical success of placing pairs of requests

in the same route. We will call this approach historical request-pair removal (denoted request graph
removal in [4]).

For this purpose, we introduce the weight h(a,b) for each pair of requests (a, b) ∈ {1, . . . , n} × {1, . . . , n}. The
weight h(a,b) denotes the number of times the two requests a and b have been served by the same vehicle in the
B best unique solutions observed so far in the search. Initially, h(a,b) is set to zero, and each time a new unique top-
B solution is observed, the weights are incremented and decremented according to the solutions entering and leaving
the top-B solutions. An appropriate value for B was experimentally found to be 100.

The weights h(a,b) could be used in a similar way as in the historical node-pair removal heuristic described above, but
initial experiments indicated that this was an unpromising approach. Instead, the graph is used to define the relatedness
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between two requests, such that two requests are considered to be related if the weight of the corresponding edge in the
request graph is high. This relatedness measure is used as in the related removal heuristic described in Section 5.1.3.

5.2. Inserting requests

The considered insertion heuristics all construct a number of routes for the vehicles. As each route can be considered
as an individual sub-problem the heuristics can build the routes sequentially or in parallel as discussed in Section 4.2.
The sequential heuristics build one route at a time while parallel heuristics construct several routes at the same time.
The heuristics presented in this paper are all parallel, as they are used in a context where a number of partial routes
k ∈ R are given, and a number of unplaced requests U is inserted from the request bank.

5.2.1. Basic greedy heuristic
A simple greedy approach is to repeatedly insert a request in the cheapest possible route. More formally, let �fi,k

denote the change in the objective value incurred by inserting request i at the cheapest position in route k. We set
�fi,k = ∞ if request i cannot be inserted in route k. Following the greedy approach, we calculate

(i, k) := arg min
i∈U,k∈R

�fi,k (23)

and insert request i in route k at its minimum cost position. This process continues until all requests have been inserted
or no more requests are feasible. The time complexity of this basic greedy heuristic is decreased by tabulating all
values of �fi,k and noting that only one route is changed in each iteration.

5.2.2. Regret heuristics
An obvious problem with the basic greedy heuristic is that it often postpones the placement of difficult requests

to the last iterations where we do not have much freedom of action. The regret heuristic tries to circumvent the
problem by incorporating a kind of look-ahead information when selecting the request to insert. Regret heuristics have
been used by Potvin and Rousseau [38] for the VRPTW and in the context of the generalized assignment problem by
Trick [39].

Let �f
q
i denote the change in the objective value incurred by inserting request i into its best position in the qth

cheapest route for request i. For example, �f 2
i denotes the change in the objective value by inserting request i in the

route where the request can be inserted second cheapest. In each iteration, the regret heuristic chooses to insert the
request i according to

i := arg max
i∈U

(�f 2
i − �f 1

i ). (24)

The request is inserted in the best possible route at the minimum cost position. In other words, we maximize the
difference of cost of inserting the request i in its best route and its second best route. We repeat the process until no
more requests can be inserted.

The heuristic can be extended in a natural way to define a class of regret heuristics: the regret-q heuristic is the
construction heuristic that in each construction step chooses to insert request i given by

i := arg max
i∈U

(
q∑

h=2

�f h
i − �f 1

i

)
. (25)

Ties are broken by selecting the request with smallest insertion cost. The request i is inserted at its minimum cost
position, in its best route.

The regret heuristic based on criteria (24) is obviously a regret-2 heuristic and the basic greedy heuristic
from Section 5.2.1 is a regret-1 heuristic due to the tie-breaking rules. Informally speaking, heuristics with q > 2
investigate the cost of inserting a request on the q best routes and chooses to insert the request whose cost difference
between inserting it into the best route and the q − 1 best routes is largest. Compared to a regret-2 heuristic,
regret-q heuristics with large values of q discover earlier when the possibilities for inserting a request at a favorable
place becomes limited.
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5.3. Master local search framework

At the master level we have chosen to use simulated annealing as our local search framework. Our acceptance criteria
in line 5 of the main algorithm depicted in Fig. 2 thus becomes to accept a candidate solution x′ given the current
solution x with probability

e−(f (x′)−f (x))/T , (26)

where T > 0 is the temperature. We use a standard exponential cooling rate, starting from the temperature Tstart and
decreasing T according to the expression T =T c, where c is the cooling rate, 0 < c < 1. We calculate Tstart by inspecting
our initial solution. The following method was developed in [4] and works well when the number of requests in the
problems to be solved is relatively constant. First, the cost z′ of the initial solution is calculated using a modified
objective function. In the modified objective function, � (cost of having requests in the request bank) is set to zero.
The start temperature is now set such that a solution that is w percent worse than the current solution is accepted with
probability 0.5. The reason for setting � to zero is that typically this parameter is large and could cause us to set the
starting temperature too high if the initial solution had some requests in the request bank. Now, w is a parameter that
has to be set. We denote this parameter the start temperature control parameter. We have observed that this approach
is better at coping with instances of different sizes if we divide the start temperature found by the number of requests
in the instance.

5.4. Applying noise to the objective function

As mentioned in Section 4.1 it can be necessary to use noising or randomization in the destroy and repair heuristics,
as a diversification operator at the master level is not sufficient.

For the RPDPTW problem we have chosen to add a noise term to the objective function of the insertion heuristics.
Every time we calculate the cost C of a request insertion into a route, we add some noise 	 and calculate a modified
insertion cost C′ = max{0, C + 	}. The noise 	 is chosen as a random number in the interval [−Nmax, Nmax], where
Nmax = 
 maxi,j∈V {dij }, and 
 is a parameter that controls the amount of noise. We use the maximum distance to make
the noise level proportional to the objective value. The distances form part of the objective function in all problems
considered, hence the noise level is somehow proportional to the objective function.

Every insertion heuristic is split into two heuristics—one using noise, and one using the original objective function
only.After selecting which removal and insertion heuristic to use, it is decided if the clean or the noise imposed insertion
heuristic should be used. This is again done using the roulette wheel selection principle as we keep track of how well the
insertion heuristics with and without noise have been performing recently. Note that we do not keep track of how well
each individual insertion heuristic is performing with and without noise, but only the insertion heuristics in general.

5.5. Adaptive weights adjustment

The roulette wheel selection mechanism in the ALNS framework presented in Section 4.1 is based on the scores
�i of the respective heuristics. A high score corresponds to a successful heuristic, and hence the heuristic should be
chosen with larger probability.

The scores are collected during some small time segments, defined as 100 iterations. The observed score �i,j of a
heuristic i in time segment j is incremented with the following values depending on the new solution x′:

�1 The last remove–insert operation resulted in a new global best solution x′.
�2 The last remove–insert operation resulted in a solution x′ that has not been accepted before, and the cost of the new

solution is better than the cost of current solution.
�3 The last remove–insert operation resulted in a solution x′ that has not been accepted before. The cost of the new

solution is worse than the cost of current solution, but the solution was accepted.

We distinguish between the two latter situations since we prefer heuristics that are able to improve on the solution, but
we also want to reward heuristics that can diversify the search to some extent. We keep track of visited solutions by
assigning a hash key to each solution and storing the key in a hash table.
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At the end of each segment we calculate the smoothened scores to be used in the roulette wheel selection as

�i,j+1 = �
�i,j

ai

+ (1 − �)�i,j , (27)

where ai is the number of times the heuristic has been called in the time segment. The reaction factor � controls how
quickly the weight adjustment algorithm reacts to changes in the scores. If � = 1 then the roulette wheel selection
is only based on the scores in the most recent segment, while if � < 1 the scores of past segments is also taken into
account. For an illustration of how the scores evolve during a search we refer the reader to [3].

5.6. Minimizing the number of vehicles used

The presented heuristic minimizes the travel costs, hence in order to minimize the number of vehicles also, we use
a two-stage approach.

Starting from a heuristic solution which makes use of m vehicles, we repeatedly remove one route and place the
corresponding requests in the request bank. If the ALNS heuristic is able to find a solution that serves all requests we
proceed with a lower number of routes. We assign a large cost � to requests in the request bank to encourage solutions
with all requests serviced.

If the ALNS heuristic fails to find a solution with all requests serviced, the algorithm steps back to the last feasible
solution encountered and proceeds with the second stage of the algorithm which consists of the ordinaryALNS heuristic
with the last found feasible solution as a starting point. For additional detail on the two-stage algorithm see [3].

A different two-stage approach was used by Bent and Van Hentenryck [9], in which two distinct neighborhoods and
metaheuristics were used for the two stages.

5.7. Initial solution

The initial solution used in the local search is found by a regret-2 heuristic. All requests are initially placed in the
request bank, and the regret-2 heuristic is run in parallel for all vehicles.

6. Computational experiments

6.1. Parameter tuning

In order to keep the parameter tuning to a minimum we have used almost the same parameter setting as determined
in [3], with the exception of the cooling rate c and the start temperature control parameter w. These were calibrated
by selecting five reasonable values for each parameter and testing the 25 possible combinations on eight VRPTW
instances with between 100 and 1000 customers. This was done separately for both the vehicle minimizing ALNS and
the ordinary distance minimizing ALNS, so different values for c and w are used when trying to find a feasible solution
and when minimizing the distance.

6.1.1. Selecting the number of requests to remove
In our past work [3,4], we have removed up to 100 requests in each iteration. Experiments indicated that we seldom

accepted the moves resulting from such removals as the insertion heuristics are too weak. Consequently, the maximum
number of requests that can be removed in a single iteration has been reduced to 60. It was also observed that moves
resulting from removing a small number of requests often were accepted, but seldom lead to any major improvements
of the solution. Therefore, we now remove at least 0.1n requests in each iteration. To be precise, the number of requests
to remove is found as a random number between min{0.1n, 30} and min{0.4n, 60}. That is, for small instances the
number of requests to remove will be in the interval [0.1n, 0.4n] while for larger instances the interval is [30, 60].
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Fig. 3. Solution cost as function of iteration count. Along the x-axis we show the iteration count while the y-axis shows solution cost. The upper
graph is the cost of the accepted solutions while the lower graph is the cost of the currently best known solution.
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Fig. 4. (Left) Difference between accepted solutions. The figure shows the Hamming distance between an accepted solution and the last accepted
solution. (Right) Difference between proposed solution and last accepted solution. The figure shows the Hamming distance between each proposed
solution and the last accepted solution. The x-axis shows iteration count and the y-axis shows solution distance.

6.2. Analysis of typical search

In order to illustrate how the present ALNS heuristic works, we have produced a number of figures by running the
heuristic on a 200 customer VRPTW instance minimizing the traveled distance. All figures are from the same search.

Fig. 3 shows the cost of the accepted solutions and the best known solution as a function of the iteration count. The
figure is very typical for a simulated annealing metaheuristic. Initially, very poor moves are accepted and consequently
the graph of accepted solutions is fluctuating wildly. As the temperature is decreased the fluctuations become smaller
and they eventually nearly die out such that only improving solutions or very mildly deteriorating solutions are accepted.

The next sequence of figures all show the distance between selected solutions. We have chosen to define the distance
between two solutions x and x′ as the Hamming distance between the corresponding binary edge-variables. Fig. 4 (left)
shows the distance between each new accepted solution and the previously accepted solution (the current solution).
The figure illustrates that in the first half of the search the ALNS can make huge changes to the solution in a single
move as discussed in Section 4.3. In the other half of the search only small moves are accepted. Fig. 4 (right) depicts
the difference between each proposed solution and the last accepted solution. The figure shows that large moves are
proposed throughout the search process, but towards the end of the search these large moves are not accepted.
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Fig. 5. (Top left) Hamming distance between accepted solutions and the currently best known solution. (Top right) Hamming distance between
accepted solutions and the best solution found during the search. (Bottom) The two plots showed in the same diagram. The x-axis shows iteration
count and the y-axis shows Hamming distance.

The above observations cause us to suggest some possible improvements to the algorithm: (1) Towards the end
of the search it seems to be beneficial to reduce the number of requests q that are removed in each iteration as the
simulated annealing framework generally will accept only minor changes. This could speed up the algorithm or allow
us to perform more iterations within the same amount of time. (2) Several moves have distance zero, meaning that
no changes were made to the solution vector. Obviously, such moves should be avoided, possibly by incorporating a
tabu-like principle in the insertion heuristics.

Fig. 5 (top left) shows the Hamming distance between the accepted solutions and the previously best known solution.
Every time the distance reaches zero, we have most likely found a new best solution (or we have returned to the previously
best known solution). It is interesting to see how quickly the search moves away from the currently best known solution.
This behavior is contrary to some of the ideas behind the variable neighborhood metaheuristics and the noising method,
where one tries to stick around the currently best known solution or return to it if the current search direction seems
fruitless. Also notice that we move very far away from the best solutions. This can be seen as the number of edges
in a solution is equal to 2n + m. The maximum Hamming distance between two solutions is therefore 2(2n + m).
In the instance studied in this section n = 200 and m = 20, thus the maximum Hamming distance for this instance
is 840.

Fig. 5 (top right) shows the Hamming distance from each accepted solution and the best solution found throughout
the search. It is interesting to see that this plot is much more steady compared to the plot in Fig. 5 (top left) and that
even though we are moving very far away from the previously best known solution, the distance to the overall best
solution (which of course is unknown early in the search) remains roughly stable.
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Fig. 5 (bottom) combines the two previous plots. The upper contours of the two plots fit each other surprisingly well.
This indicates that the ALNS heuristic quickly moves away from the currently best known solution until the distance
to the currently best known solution is roughly the same as the distance to the final best known solution. The search
then visits solutions where the two distances are roughly the same until a new best solution is found. We believe that
the simulated annealing framework is responsible for this behavior.

6.3. Application of the heuristic to standard benchmark problems

In this section, we examine how the proposed heuristic performs on standard benchmark instances for the five
problem types considered in this paper. In order to investigate how much influence the number of LNS iterations
has on the solution quality, we have tested two configurations of our algorithm. One version (ALNS-25K) that does
25 000 iterations while minimizing the total traveled distance and one that does 50 000 iterations (ALNS-50K). Both
configurations use up to 25 000 iterations in the vehicle minimization stage. The cooling rate c in the simulated annealing
algorithm described in Section 5.3 was adjusted such that both configurations go through the same temperature span.

We have applied the heuristic to each instance 5 or 10 times, depending on the instance size. We report the best
solution value out of the 5 or 10 experiments as well as the average solution value.

All experiments were performed on a 3 GHz Pentium 4 computer. Detailed results from the experiments can be found
in our technical report [40]. As mentioned before, the same parameter configuration has been used for all experiments.

6.3.1. Vehicle routing problems with time windows
A large number of metaheuristics have been proposed for solving theVRPTW. Bräysy and Gendreau [7] have surveyed

most of these approaches, and their survey contains 47 metaheuristics. Most of these metaheuristics have been applied
to the Solomon data set [41]. The Solomon data set contains 56 VRPTW instances that all contain 100 customers.
The instances contain a variety of customer and time window distributions and have proved to be a challenge for both
heuristics and exact methods since their introduction. Most of the proposed metaheuristics use vehicle minimization
as primary objective and travel distance minimization as secondary objective, we prioritize our objectives in the same
way. In this section, we compare the ALNS heuristic to the “best” of the previously proposed metaheuristics. It is
hard to decide which of the previously proposed metaheuristics that are the best, as several criteria for comparing the
heuristics could be used. In this paper, we have selected the metaheuristics that have been able to reach the minimum
number of total vehicles used for all of the instances in the Solomon data set, as these in a certain sense can be regarded
as the best heuristics in terms of solution quality. Table 1 summarizes this comparison.

The table shows that the ALNS heuristic is able to compete with the best heuristics for the VRPTW when considering
the moderately sized Solomon instances, even though it was not specifically designed for this problem type. The
heuristics by Homberger and Gehring [10] and Bent and Van Hentenryck [9] obtain slightly better results compared to
the best solutions obtained by ALNS-25K, but the papers do not state how many experiments that were performed to
reach these results. On the other hand, ALNS-25K reaches slightly better solutions than the three remaining heuristics
and the computational time is reasonable. The column showing the average performance of ALNS-25K indicates that
a single run of the heuristic can be performed quite fast but then one should not expect to reach the minimum number
of vehicles. It does not seem worthwhile to spend 50 000 iteration instead of 25 000 for these rather small problems.
During the calibration of the algorithm we discovered a new best solution to problem R207. This solution can be found
in the Appendix.

When the VRPTW has been solved by exact methods in the literature one has usually considered minimizing the
traveled distance without putting any limits on the number of vehicles. Furthermore, all distances are usually truncated
to one decimal (see, for example, the work by Larsen [45]). In Table 2, we summarize the result of applying the ALNS-
25K heuristic to the Solomon VRPTW instances using the same objective and rounding criteria as the exact methods.
The heuristic has been applied to each instance 10 times and the table reports the best and average performances. The
table shows that the heuristic is able to find solutions that are very close to the optimal solutions and in many cases the
heuristic is able to identify the optimal solution in at least one of the test runs.

The optimal solutions have been collected from Chabrier [13], Cook and Rich [46], Danna and Le Pape [47], Feilet
et al. [48], Irnich and Villeneuve [12], Kallehauge et al. [11], Kohl et al. [49] and Larsen [45].

Larger VRPTW instances have been proposed by Gehring and Homberger [30]. The Gehring/Homberger data set
contains 300 instances with between 200 and 1000 customers. In Tables 3–7, we compare the ALNS heuristic to the
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Table 1
Solomon instances with 100 customers

BBB HG B BH IIKMUY ALNS 25K ALNS 50K

Best of 10 Avg. of 10 Best of 10 Avg. of 10

R1 11.92 11.92 11.92 11.92 11.92 11.92 12.03 11.92 12.03
1221.10 1212.73 1222.12 1211.10 1217.40 1213.39 1216.93 1212.39 1215.16

R2 2.73 2.73 2.73 2.73 2.73 2.73 2.75 2.73 2.75
975.43 955.03 975.12 954.27 959.11 958.60 968.01 957.72 965.94

C1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
828.48 828.38 828.38 828.38 828.38 828.38 828.38 828.38 828.38

C2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
589.93 589.86 589.86 589.86 589.86 589.86 589.86 589.86 589.86

RC1 11.50 11.50 11.50 11.50 11.50 11.50 11.60 11.50 11.60
1389.89 1386.44 1389.58 1384.17 1391.03 1385.39 1386.91 1385.78 1385.56

RC2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
1159.37 1108.52 1128.38 1124.46 1122.79 1124.77 1140.06 1123.49 1135.46

CNV 405 405 405 405 405 405 407.5 405 407.5
CTD 57 952 57 192 57 710 57 273 57 444 57 360 57 641 57 332 57 550

CPU P-400 MHz P-400 MHz P-200 MHz SU 10 P3 1 GHz P4 3 GHz P4 3 GHz P4 3 GHz P4 3 GHz
T. (s) 1800 n/a 4950 7200 15 000 86 86 146 146
Exp. 3 n/a 1 > 5 1 10 1 10 1

The table compares the ALNS heuristic to the heuristics by Berger et al. (BBB) [42], Homberger and Gehring (HG) [10], Bräysy (B) [43], Bent
and Van Hentenryck (BH) [9] and Ibaraki et al. (IIKMUY) [44]. The data set is divided into six groups: R1, R2, C1, C2, RC1, RC2. For each group
we report two numbers per heuristic. The top number is the number of vehicles used and the bottom number is the distance traveled. These numbers
have been averaged over all the instance in the given group. The rows named CNV and CTD show the cumulative number of vehicles and distances,
respectively. The row CPU shows the computer used in the experiment. “P” is an abbreviation for “Pentium”, “SU” is an abbreviation for Sun Ultra.
The row T. (s) shows the number of CPU seconds used for finding the solutions. The last row shows the number of experiments that were performed
in order to obtain the results presented in the table (if multiple experiments were performed, the table shows the best results obtained). The two
columns for the ALNS heuristic show the results obtained with the 25 000 iteration configuration and the 50 000 iteration configuration. For each
configuration we show two columns. The first column shows the best result out of 10 experiments, and the second column show the average solution
quality (averaged over the 10 experiments). Bold entries mark the best solution quality obtained among the heuristics in the comparison.

Table 2
Comparison of ALNS to exact methods

Customers Instances Solved to Optimums Avg. gap Avg. gap Avg. time
optimality found all (%) opt. (%) (s)

25 56 56 56 0.02 0.02 5
50 56 53 48 0.19 0.13 15

100 56 37 27 0.36 0.26 47

The columns should be interpreted as follows: Customers—the number of customers in the test set, Instances—the number of instances in the
test set, Solved to optimality—the number of instances that has been solved to optimality in the literature, Optimums found—the number of optimal
solutions that were found by the heuristic, Avg. gap all (%)—the average gap over all instances, Avg. gap opt. (%)—the average gap over instances
solved to optimality in the literature, Avg. time (s)—the average time in seconds spent on performing one experiment.

best heuristics that have been applied to these problems. The two heuristics that reach the best solution quality is the
heuristic by Mester and Bräysy [8] and the ALNS heuristic. Overall the ALNS heuristic is better at minimizing the
number of vehicles which is the primary objective of these problems. The heuristic of Mester and Bräysy is very good
at minimizing the traveled distance though. The experiments show that the time used by the ALNS heuristic scales
quite well with the problem size when the number of iterations is kept fixed. The 50 000 iteration ALNS configuration
becomes worthwhile for the larger problems. For problems with 600 customers or more the difference in total traveled
distance obtained by the ALNS-25K and ALNS-50K configurations become quite large, as the simulated annealing
metaheuristic needs more iterations to obtain a good solution for large problems.
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Table 8
Large VRPTW instances

No. R1 R2 C1 C2 RC1 RC2

Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist.

200 customers
1 20 4785.96 4 4563.55 20 2704.57 6 1931.44 18 3647.56 6 3126.03
2 18 4059.57 4 3650.54 18 2943.83 6 1863.16 18 3269.91 5 2828.39
3 18 3387.64 4 2892.07 18 2710.21 6 1776.96 18 3034.45 4 2613.12
4 18 3086.11 4 1981.30 18 2644.92 6 1713.46 18 2869.74 4 2052.74
5 18 4125.19 4 3377.18 20 2702.05 6 1878.85 18 3430.03 4 2912.13
6 18 3586.80 4 2929.72 20 2701.04 6 1857.35 18 3357.90 4 2975.13
7 18 3160.44 4 2456.71 20 2701.04 6 1849.46 18 3233.29 4 2539.85
8 18 2971.66 4 1849.87 19 2775.48 6 1820.53 18 3110.46 4 2314.61
9 18 3802.55 4 3113.74 18 2687.83 6 1830.05 18 3114.02 4 2175.98

10 18 3312.44 4 2666.10 18 2644.25 6 1808.21 18 3020.24 4 2015.61

400 customers
1 40 10 432.30 8 9338.49 40 7152.06 12 4116.33 36 8813.43 11 6834.02
2 36 9115.68 8 7649.87 36 7733.55 12 3930.05 36 8118.43 9 6355.59
3 36 7988.22 8 5998.04 36 7082.13 12 3775.32 36 7663.73 8 5055.02
4 36 7415.81 8 4326.48 36 6816.17 12 3543.60 36 7368.47 8 3647.39
5 36 9479.10 8 7252.64 40 7152.06 12 3946.14 36 8426.57 9 6119.44
6 36 8556.38 8 6212.37 40 7153.45 12 3875.94 36 8390.24 8 5997.24
7 36 7725.97 8 5136.74 39 7546.78 12 3894.98 36 8223.65 8 5476.57
8 36 7390.76 8 4055.22 37 7546.32 12 3796.00 36 7922.67 8 4877.39
9 36 8970.98 8 6507.40 36 7573.18 12 3881.21 36 7953.20 8 4601.30

10 36 8325.16 8 5894.40 36 7145.92 12 3687.13 36 7774.83 8 4355.52

600 customers
1 59 21 677.41 11 18 837.28 60 14 095.64 18 7780.84 55 17 751.33 15 13 163.03
2 54 20 045.49 11 15 069.24 56 14 174.12 17 8799.38 55 16 548.43 12 11 853.72
3 54 17 733.91 11 11 291.52 56 13 803.50 17 7604.00 55 15 499.02 11 9863.35
4 54 16 374.29 11 8163.24 56 13 578.66 17 6993.77 55 15 072.90 11 7231.64
5 54 21 243.24 11 15 418.00 60 14 085.72 18 7578.12 55 17 401.34 12 12 560.43
6 54 18 948.53 11 12 936.28 60 14 089.66 18 7554.61 55 17 355.10 11 12 282.52
7 54 17 438.28 11 10 269.96 58 15 017.03 18 7520.34 55 17 058.40 11 11 052.49
8 54 16 146.17 11 7752.78 57 14 343.05 17 8696.15 55 16 510.65 11 10 488.75
9 54 20 375.70 11 13 885.52 56 13 767.45 18 7356.19 55 16 435.71 11 9882.71

10 54 18 902.19 11 12 568.79 56 13 688.57 17 7938.94 55 16 316.51 11 9340.06

800 customers
1 80 37 492.04 15 28 822.48 80 25 184.38 24 11 664.00 73 31 275.38 19 20 954.95
2 72 33 816.69 15 23 274.22 74 25 536.76 24 11 428.07 73 29 172.08 17 18 032.89
3 72 30 317.49 15 18 078.82 72 24 629.86 24 11 184.67 73 28 164.66 15 14 800.78
4 72 28 568.78 15 13 413.79 72 23 938.33 23 10 999.42 73 27 201.39 15 11 368.19
5 72 35 503.63 15 25 077.09 80 25 166.28 24 11 451.57 73 30 548.23 16 19 180.13
6 72 32 360.07 15 20 969.81 80 25 160.85 24 11 403.57 73 30 511.07 15 19 075.89
7 72 29 979.63 15 16 977.49 79 25 425.92 24 11 412.08 73 30 007.82 15 17 329.32
8 72 28 341.21 15 12 945.52 75 25 450.99 23 13 878.40 73 29 547.96 15 16 226.78
9 72 34 218.41 15 22 877.21 72 25 737.46 24 11 650.10 73 29 360.93 15 15 687.20

10 72 32 569.97 15 21 092.27 72 25 697.68 23 12 103.56 73 28 993.52 15 14 944.14
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Table 8 (continued)

No. R1 R2 C1 C2 RC1 RC2

Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist.

1000 customers
1 100 54 720.19 19 43 264.68 100 42 478.95 30 16 879.24 90 48 933.68 21 30 396.13
2 91 55 428.79 19 34 417.47 91 42 249.60 29 17 563.06 90 46 165.33 18 27 552.05
3 91 49 634.84 19 25 400.16 90 40 376.43 30 16 109.71 90 44 014.81 18 20 811.18
4 91 45 303.47 19 18 332.77 90 39 980.07 29 16 011.30 90 42 607.34 18 16 007.59
5 92 53 089.15 19 37 746.01 100 42 469.18 30 16 596.69 90 48 934.53 18 28 368.48
6 91 54 555.32 19 30 778.85 100 42 471.29 30 16 369.10 90 48 766.98 18 28 746.61
7 91 48 141.47 19 23 991.71 99 42 673.51 31 16 590.48 90 48 005.94 18 26 765.43
8 91 44 853.70 19 17 844.36 95 42 359.27 29 18 407.27 90 47 122.61 18 24 961.29
9 92 52 015.72 19 34 349.70 91 41 482.00 30 16 294.72 90 46 889.79 18 24 113.72

10 92 49 769.85 19 31 682.52 90 42 214.60 29 17 582.15 90 46 080.51 18 23 056.75

The first column shows the problem number. The columns veh. and dist. show the number of vehicles and total distance traveled in the best solution
found. The table is grouped by instance type and instance size. Bold entries indicate a best solution (either a tie with one of the heuristics from the
literature or a new best solution).

The ALNS heuristic has been able to improve the best known solution for 122 out of the 300 large scale VRPTW
instances. The best solutions for the large VRPTW instances obtained by the ALNS-25K and ALNS-50K configurations
are shown in Table 8.

6.3.2. Multi-depot vehicle routing problem
Table 9 shows the results obtained on 33 MDVRP instances used by Cordeau et al. [1]. Both ALNS configurations

have been applied 10 times to each instance. The results obtained by the ALNS heuristic are compared to the best
results obtained by heuristics proposed by Chao et al. [26], Renaud et al. [25] and Cordeau et al. [1]. The heuristic that
previously has achieved the best solution quality is the one proposed by Cordeau et al. The cost of a solution is defined
as the total distance traveled by the vehicles. The table shows that the ALNS heuristic has been able to improve upon the
best solution for a considerable number of instances. Each configuration has found 14 new best solutions, but as most
of these overlap, the total number of new best solutions is 15. The individual improvements are typically rather small
though. The table also shows that the ALNS heuristic is quite stable as the average gap from the best known solution
never surpasses 2% and 1% in the ALNS-25K and ALNS-50K configurations, respectively. It should be mentioned that
the ALNS heuristic is slower than the previously proposed heuristics. The ALNS-25K and ALNS-50K configurations
use on average 2 and 4 min, respectively, to perform one experiment on a 3 GHz Pentium 4. The heuristic by Cordeau
et al. on average used 11.7 min to perform one experiment on a Sun SPARCstation 10 which is considerably slower
than our computer.

6.3.3. Site-dependent vehicle routing problem
The heuristic has been applied to the same test instances as used by Cordeau and Laporte [29]. The results obtained

on the SDVRP instances are summarized in Table 10. The results are promising as the average solution quality of
ALNS-25K overall is better than results previously published. Also the sum of the costs of the best known solutions
found by the ALNS-50K configuration is more than 2% better than the previous best known solution and the best known
solution was improved for 30 out of the 35 instances. The computational time needed for performing one experiment
with theALNS-25K configuration seems to be roughly comparable with the time needed for performing one experiment
with the heuristic proposed by Cordeau and Laporte [29]. The ALNS-25K configuration spends on average 1.4 min to
perform one experiment while the heuristic by Cordeau and Laporte spent around 12 min to perform the same task on
a Sun Ultra 2 (300 MHz). It should be mentioned that the problem PR02 caused the ALNS heuristic some difficulties,
as it was only able to find a feasible solution in 1 out of 10 experiments for the ALNS-25K configuration and 3 out of
10 experiments for the ALNS-50K configuration.
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Table 9
Multi depot vehicle routing problems

Best known ALNS 25K ALNS 50K

n t Type Cost Ref Avg. Best Avg. Avg. Avg. Best Avg. Avg.
sol. sol. gap time sol. sol. gap time

(%) (s) (%) (s)

P01 50 4 C 576.87 CGW 576.87 576.87 0.00 14 576.87 576.87 0.00 29
P02 50 4 C 473.53 RLB 473.53 473.53 0.00 14 473.53 473.53 0.00 28
P03 75 2 C 641.19 CGW 641.19 641.19 0.00 32 641.19 641.19 0.00 64
P04 100 2 C 1001.59 CGL 1008.49 1001.59 0.74 42 1006.09 1001.04 0.50 88
P05 100 2 C 750.03 CGL 753.04 751.86 0.40 58 752.34 751.26 0.31 120
P06 100 3 C 876.5 RLB 884.36 880.42 0.90 47 883.01 876.70 0.74 93
P07 100 4 C 885.8 CGL 889.14 881.97 0.81 43 889.36 881.97 0.84 88
P08 249 2 CD 4437.68 CGL 4426.86 4387.38 0.90 166 4421.03 4390.80 0.77 333
P09 249 3 CD 3900.22 CGL 3902.18 3874.75 0.74 182 3892.50 3873.64 0.49 361
P10 249 4 CD 3663.02 CGL 3676.93 3655.18 0.74 180 3666.85 3650.04 0.46 363
P11 249 5 CD 3554.18 CGL 3592.82 3552.27 1.32 174 3573.23 3546.06 0.77 357
P12 80 2 C 1318.95 RLB 1319.70 1318.95 0.06 38 1319.13 1318.95 0.01 75
P13 80 2 CD 1318.95 RLB 1321.10 1318.95 0.16 30 1318.95 1318.95 0.00 60
P14 80 2 CD 1360.12 CGL 1360.12 1360.12 0.00 29 1360.12 1360.12 0.00 58
P15 160 4 C 2505.42 CGL 2517.96 2505.42 0.50 125 2519.64 2505.42 0.57 253
P16 160 4 CD 2572.23 RLB 2577.28 2572.23 0.20 92 2573.95 2572.23 0.07 188
P17 160 4 CD 2709.09 CGL 2709.65 2709.09 0.02 90 2709.09 2709.09 0.00 179
P18 240 6 C 3702.85 CGL 3751.85 3727.58 1.32 209 3736.53 3702.85 0.91 419
P19 240 6 CD 3827.06 RLB 3846.35 3839.36 0.50 158 3838.76 3827.06 0.31 315
P20 240 6 CD 4058.07 CGL 4065.32 4058.07 0.18 151 4064.76 4058.07 0.16 300
P21 360 9 C 5474.84 CGL 5576.82 5519.47 1.86 293 5501.58 5474.84 0.49 582
P22 360 9 CD 5702.16 CGL 5731.10 5714.46 0.51 228 5722.19 5702.16 0.35 462
P23 360 9 CD 6095.46 CGL 6107.84 6078.75 0.48 223 6092.66 6078.75 0.23 443
PR01 48 4 CD 861.32 CGL 861.32 861.32 0.00 16 861.32 861.32 0.00 30
PR02 96 4 CD 1307.61 CGL 1311.54 1307.34 0.32 52 1308.17 1307.34 0.06 103
PR03 144 4 CD 1806.6 CGL 1810.90 1806.53 0.24 106 1810.66 1806.60 0.23 214
PR04 192 4 CD 2072.52 CGL 2080.55 2066.64 0.95 146 2073.16 2060.93 0.59 296
PR05 240 4 CD 2385.77 CGL 2352.59 2341.65 0.63 188 2350.31 2337.84 0.53 372
PR06 288 4 CD 2723.27 CGL 2695.15 2685.35 0.36 232 2695.74 2687.60 0.39 465
PR07 72 6 CD 1089.56 CGL 1089.56 1089.56 0.00 29 1089.56 1089.56 0.00 58
PR08 144 6 CD 1666.6 CGL 1677.31 1665.80 0.75 105 1675.74 1664.85 0.65 207
PR09 216 6 CD 2153.1 CGL 2148.85 2136.42 0.58 173 2144.84 2136.42 0.39 350
PR10 288 6 CD 2921.85 CGL 2913.34 2889.49 0.83 228 2905.43 2889.82 0.55 455

Tot. 80 394 80 651.59 80 249.57 3894 80 448.26 80 133.89 7809
Avg. 0.52 118 0.34 237

< PB 14 14
#B 18 20 27

The leftmost column shows the problem name, while the rest of the table is divided into three major columns that display the previously best known
results and the results obtained by the ALNS-25K and ALNS-50K configurations. The sub-columns should be interpreted like this: n—number of
customers, t—number of depots, type—the type of the instance (C indicates that the instance is capacity constrained, while D indicates that route
duration constraints are present), cost—the cost of the previously best known solution (the cost is calculated as the total distance traveled), ref—where
the solution was first reported. The following abbreviations are used: CGW—Chao et al. [26], RLB—Renaud et al. [25], CGL—Cordeau et al. [1].
The last 10 instances were introduced by Cordeau et al. [1] and the two other heuristics have not been applied to these instances. The columns best
sol. and avg. sol. show the cost of the best solution and the average cost of the solutions obtained during 10 experiments. Avg. gap shows how far
the average solution cost is from the best known solution. Avg. time shows how much time the heuristic spends in one experiment. The rows Tot.
and Avg. sums and averages key columns. “< PB” shows how many times the best solution found by the ALNS configuration was better than the
previous best known solution and #B shows the number of best known solutions obtained. Entries written in bold indicate best known solutions.

6.3.4. Capacitated vehicle routing problem
For the CVRP we have chosen to test the ALNS heuristic on three datasets. The first dataset was proposed by

Christofides et al. [53] and contains instances with between 50 and 200 customers. The second dataset was proposed
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Table 10
Site-dependent vehicle routing problems

Best known ALNS 25K ALNS 50K

n t Cost Ref Avg. Best Avg. Avg. Avg. Best Avg. Avg.
sol. sol. gap time sol. sol. gap time

(%) (s) (%) (s)

P01 50 3 642.66 CL 645.04 640.32 0.74 10 642.93 640.32 0.41 20
P02 50 2 598.1 CL 599.40 598.10 0.22 10 598.82 598.10 0.12 19
P03 75 3 959.36 CL 962.36 958.14 0.56 20 963.14 957.04 0.64 40
P04 75 2 854.43 CL 858.05 854.43 0.42 18 856.22 854.43 0.21 36
P05 100 3 1020.22 CL 1012.46 1007.51 0.89 34 1009.08 1003.57 0.55 68
P06 100 2 1036.02 CL 1034.09 1028.70 0.54 35 1032.67 1028.52 0.40 69
P07 27 3 391.3 CGW 391.30 391.30 0.00 4 391.30 391.30 0.00 8
P08 54 3 664.46 CGW 664.46 664.46 0.00 12 664.46 664.46 0.00 24
P09 81 3 948.23 CGW 958.69 948.23 1.10 24 961.36 948.23 1.38 47
P10 108 3 1223.88 CL 1229.42 1218.75 0.88 38 1225.28 1218.75 0.54 76
P11 135 3 1464.98 CL 1488.28 1468.38 1.70 58 1475.85 1463.33 0.86 116
P12 162 3 1695.67 CL 1697.98 1690.56 1.17 78 1689.62 1678.40 0.67 157
P13 54 3 1196.73 CL 1194.40 1194.18 0.02 12 1194.91 1194.18 0.06 24
P14 108 3 1962.66 CL 1961.11 1960.62 0.02 36 1960.83 1960.62 0.01 72
P15 162 3 2751.45 CL 2712.10 2695.22 1.01 77 2701.61 2685.09 0.61 152
P16 216 3 3491.18 CL 3421.74 3402.94 0.75 109 3411.50 3396.36 0.45 213
P17 270 3 4230.96 CL 4109.62 4084.92 0.60 146 4114.26 4085.61 0.72 291
P18 324 3 4929.71 CL 4821.55 4775.35 1.39 177 4795.31 4755.50 0.84 346
P19 100 3 850.39 CL 852.09 846.35 0.71 43 848.54 846.07 0.29 85
P20 150 3 1046.14 CL 1048.75 1042.21 1.74 83 1042.10 1030.78 1.10 168
P21 199 3 1337.83 CL 1281.58 1272.41 0.77 110 1283.03 1271.75 0.89 217
P22 120 3 1012.17 CL 1010.30 1008.78 0.16 65 1008.81 1008.71 0.01 130
P23 100 3 818.75 CL 807.67 803.29 0.55 37 807.00 803.29 0.46 73
PR01 48 4 1384.15 CL 1387.37 1380.77 0.48 10 1393.85 1380.77 0.95 19
PR02 96 4 2320.97 CL 2311.54 2311.54 0.00 32 2330.60 2311.54 0.82 63
PR03 144 4 2623.31 CL 2608.31 2590.01 0.71 71 2607.66 2602.13 0.68 140
PR04 192 4 3500.79 CL 3510.26 3481.44 1.04 98 3489.51 3474.01 0.45 191
PR05 240 4 4479.34 CL 4430.28 4382.65 1.09 123 4431.16 4416.38 1.11 251
PR06 288 4 4546.79 CL 4475.52 4452.93 0.70 159 4465.18 4444.52 0.47 314
PR07 72 6 1955.11 CL 1926.52 1889.82 1.94 19 1916.50 1889.82 1.41 39
PR08 144 6 3082.32 CL 3001.88 2976.76 0.84 66 3007.99 2977.50 1.05 135
PR09 216 6 3664.22 CL 3581.58 3548.22 1.28 113 3567.15 3536.20 0.88 226
PR10 288 6 4739.43 CL 4675.65 4646.96 0.62 162 4673.67 4648.76 0.57 322
PR11 1008 4 13 227.96 CL 12 987.58 12 888.47 2.11 433 12 810.71 12 719.65 0.72 847
PR12 720 6 9621.99 CL 9510.37 9437.14 1.30 332 9437.56 9388.07 0.53 658

Tot. 90 274 89 169.30 88 541.88 2853 88 810.17 88 273.77 5658
Avg. 0.80 81 0.60 162

< PB 29 30
#B 5 18 30

The table should be interpreted like Table 9. Column t shows the number of vehicle types. CL refers to the heuristic by Cordeau and Laporte [29]
and CGW refers to the heuristic by Chao et al. [28]. The ALNS heuristic was applied 10 times for each problem.

by Golden et al. [18] and contains instances with up to 483 customers. The last dataset was proposed by Li et al. [19]
and contains instances with up to 1200 customers. These are the so-far largest instances that the ALNS heuristic has
been applied to. Table 11 summarizes these experiments. Note that we only compare the ALNS heuristic to a subset of
all the CVRP heuristics that have been proposed in the literature. The heuristics used for benchmarking are the most
recent heuristics that were surveyed by Cordeau et al. [16].

The table shows that the ALNS heuristic cannot compete with the well-performing heuristic by Mester and Bräysy
[8], but its performance is comparable to the rest of the heuristics. For the last dataset, the heuristic proposed by Li
et al. must be considered to be the best as it is very fast compared to the ALNS heuristic although the ALNS heuristic
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Table 11
Capacitated vehicle routing problems

Heuristic CPU Christofides Golden et al. Li et al.

% min % min % min

TV P-200 MHz 0.64 3.84 2.88 17.55 – –
LGV Athlon 1 GHz – – 1.05 – 1.20 3.16
CGLM P4-2 GHz 0.56 24.62 1.46 56.11 – –
EOS P3-733 MHz 0.24 30.95 3.77 137.95 – –
P P3-1 GHz 0.24 5.19 0.92 66.90 – –
TK P2-400 MHz 0.23 5.22 – – – –
MB Best P4-2 GHz 0.03 7.72 0.01 72.94 – –
MB Fast P4-2 GHz 0.07 0.27 0.94 0.63 – –
BB P-400 MHz 0.49 21.25 – – – –
RDH P-900 MHz – – 0.67 49.33 – –

ALNS 25K Best of 10 P4-3 GHz 0.15 9.33 0.67 53.00 0.88 243.17
ALNS 25K Avg. P4-3 GHz 0.39 0.93 1.25 5.30 2.40 24.32
ALNS 50K Best of 10 P4-3 GHz 0.11 17.50 0.49 107.67 0.50 497.90
ALNS 50K Avg. P4-3 GHz 0.31 1.75 1.02 10.77 1.90 49.79

14 instances 20 instances 12 instances
50–200 customers 240–483 customers 560–1200 customers

The table compares the ALNS heuristic to nine heuristics proposed in the literature recently. The first column indicates the heuristic consid-
ered. TV—granular tabu search by Toth and Vigo [54], LGV—variable-length neighbor list record-to-record travel heuristic by Li et al. [19],
CGLM—unified tabu search by Cordeau et al. [1,2], EOS—very large scale neighborhood search by Ergun et al. [55], P—evolutionary algorithm
by Prins [56], TK—bone route heuristic by Tarantilis and Kiranoudis [57], MB—AGES heuristic by Mester and Bräysy [8] (two configurations of
this heuristic is included in the table), BB—hybrid genetic algorithm by Berger and Barkaoui [58], RDH—ants system algorithm by Reimann et al.
[59]. The table contains four rows for the ALNS heuristic. For each of the configurations ALNS-25K and ALNS-50K we report the best solution
quality in 10 experiments and the average solution quality (averaged over the same 10 experiments). The CPU column lists the CPU used, P is used
as an abbreviation for Pentium. The rest of the table contains three major columns, one for each dataset. For each of the datasets we report the gap
between the solution obtained by the heuristic and the best known solution and we report the time spend on average by the heuristic to solve one
instance. When reporting solution times for finding the best solution of 10 runs, the time of all runs has been included. The ALNS heuristic is the
only heuristic that has been applied to all datasets, which explains the missing entries. It should be noted that some of the numbers reported in the
table were obtained from the survey by Cordeau et al. [16].

overall is able to reach better solutions. We discovered one new best solution for the Golden et al. dataset and three
new best solutions for the Li et al. dataset.

6.3.5. Open vehicle routing problem
The results on the OVRP are summarized in Table 12. The heuristic was tested on the same 16 instances that were

used by Brandão [24] and Fu et al. [23]. The primary objective considered was to minimize the number of vehicles used,
while the secondary objective was to minimize the traveled distance. The solutions obtained by the ALNS heuristic are
promising as the best known solution to 11 out of the 16 instances has been improved. The running time of the ALNS
heuristic is comparable to the two other heuristics: the configuration of Brandão’s heuristic that obtains the best results
spends on average 9.6 min to solve an instance on a 500 MHz Pentium III. In the paper by Fu et al., two configurations
of their heuristic are tested. These configurations spend on average 6.6 and 13.9 min, respectively, to solve an instance
on a 600 MHz Pentium II. The ALNS-25K and ALNS-50K configurations use 1.4 and 2.3 min, respectively, to solve
an instance on a 3 GHz Pentium IV.

6.3.6. Computational results conclusion
The computational results presented in this section are very encouraging. The results show that the general ALNS

heuristic is on par with the best specialized heuristics for the VRPTW and that the heuristic currently is the best when
it comes to minimizing the number of vehicles in large VRPTW instances. One should keep in mind that numerous
specialized heuristics have been proposed for the VRPTW making it difficult for a general heuristic to compete on
these instances.
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Table 12
Open vehicle routing problems

Best known ALNS 25K ALNS 50K

n #veh. Cost References Avg. Avg. Best Best Avg. Avg. Avg. Avg. Best Best Avg. Avg.
sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time

(%) (s) (%) (s)

P01 50 5 408.5 FEL 416.67 5.0 416.06 5 2.00 12 416.45 5.0 416.06 5 1.95 23
P02 75 10 570.6 FEL 570.81 10.0 567.14 10 0.65 36 568.86 10.0 567.14 10 0.30 53
P03 100 8 617 FEL 642.93 8.0 641.76 8 4.20 85 642.32 8.0 641.76 8 4.10 128
P04 150 12 734.5 FEL 734.34 12.0 733.13 12 0.17 179 733.49 12.0 733.13 12 0.05 279
P05 199 16 953.4 B 912.54 16.0 897.93 16 1.84 124 907.03 16.0 896.08 16 1.22 237
P06 50 6 400.6 FEL 412.96 6.0 412.96 6 3.08 20 412.96 6.0 412.96 6 3.08 31
P07 75 10 634.5 B 592.16 10.0 584.15 10 1.54 18 588.72 10.0 583.19 10 0.95 33
P08 100 9 638.2 FEL 646.23 9.0 645.31 9 1.26 73 646.28 9.0 645.16 9 1.27 114
P09 150 13 785.2 B 766.42 13.1 759.35 13 1.13 108 764.32 13.1 757.84 13 0.85 185
P10 199 17 884.6 B 882.33 17.0 875.67 17 0.76 120 878.42 17.0 875.67 17 0.31 224
P11 120 7 683.4 B 682.68 7.0 682.12 7 0.08 73 682.39 7.0 682.12 7 0.04 141
P12 100 10 534.8 FEL 534.81 10.0 534.24 10 0.11 80 534.44 10.0 534.24 10 0.04 118
P13 120 11 943.7 B 911.98 11.0 909.80 11 0.24 61 911.12 11.0 909.80 11 0.15 116
P14 100 11 597.3 B 591.87 11.0 591.87 11 0.00 40 591.89 11.0 591.87 11 0.00 75
F11 71 4 175 FEL 177.00 4.0 177.00 4 1.14 69 177.00 4.0 177.00 4 1.14 104
F12 134 7 778.5 FEL 770.59 7.0 770.17 7 0.06 237 770.31 7.0 770.17 7 0.02 359

Tot. 156 10 340 10 246.32 156.10 10 198.67 156 1336 10 225.99 156.10 10 194.19 156 2222
Avg. 1.14 83 0.97 139

< PB 11 11
#B 5 8 11

The table should be interpreted like Table 9. The abbreviations used in the References column are: B—Brandao’s heuristic [24], FEL—the heuristic
by Fu et al. [23]. The column #veh. indicates the number of vehicles used in the previous best solution, avg. #veh. indicates the number of vehicles
used on average by the particular ALNS configuration (averaged over 10 experiments). The column best #veh. indicates the number of vehicles used
in the best found solution (out of 10 experiments).

For the MDVRP, SDVRP and OVRP the ALNS heuristic has been able to find many new best solutions and the
results on the SDVRP are especially promising. For the CVRP the proposed heuristic is able to compete with many
of the most recent heuristics, but it is outperformed by a more specialized heuristic for this problem. Nevertheless, a
couple of new best solutions were found for this problem type also. One should also keep in mind that the heuristic
was not tuned for each problem type, but a general parameter setting was used for all experiments.

The comparison between the fast and the slow version of the ALNS heuristic showed that it did not pay off to use the
ALNS-50K variant for the smaller instances, while for instances with around 400–600 or more customers it seemed
worthwhile to use the ALNS-50K configuration. Consequently, it might be useful to use a variable number of iterations
I which depends on the number n of requests. E.g. I := 20000 + 50n.

7. Conclusion

A new general heuristic framework, denotedALNS has been presented. The framework has been used to solve several
variants of vehicle routing problems in the present paper as well as in [3,4]. This includes the vehicle routing problem
with time windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle routing problem
(MDVRP), the site-dependent vehicle routing problem (SDVRP), the open vehicle routing problem (OVRP), the pickup
and delivery problem with time windows (PDPTW), the vehicle routing problem with backhauls (VRPB), the mixed
vehicle routing problem with backhauls (MVRPB), the multi-depot mixed vehicle routing problem with backhauls
(MDMVRPB), the vehicle routing problem with backhauls and time windows (VRPBTW), the mixed vehicle routing
problem with backhauls and time windows (MVRPBTW) and the vehicle routing problem with simultaneous deliveries
and pickups (VRPSDP).
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Due to the generality of the ALNS framework and the encouraging results demonstrated for a wide spectrum of
VRP problems, we believe that ALNS should be considered as one of the standard frameworks for solving large-sized
optimization problems.

Supply chain management is a research area getting increasing attention [60]. By co-ordinating activities in the
supply chain, companies can rationalize the process resulting in mutual gains. If the involved companies co-ordinate
their transportation activities we will see a need for solving mixed transportation problems, where the instances, for
example, consist of a mixture of PDPTW, MDVRP and SDVRP problems. In order to handle future changes in the
distribution structure, these algorithms need to be stable for various input types, and should not need to be tuned for
particular problem characteristics. It should be clear that the ALNS framework is very promising for such types.

In conclusion, we may add an interesting observation: we have seen that a mixture of good and less good heuristics
lead to better solutions than using good heuristics solely. It is however necessary to hierarchically control the search,
such that well-performing heuristics are given most influence, but such that all heuristics participate in the solution
process. Using this principle one gets a robust and well-performing solution approach.
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Appendix

New best solution to the Solomon R207 instance

Route Length Visit sequence

1 437.339 42 92 45 46 36 64 11 62 88 30 20 65 71 9 81 34 78 79 3 76 28 53 40 2 87 57
41 22 73 21 72 74 75 56 4 25 55 54 80 68 77 12 26 58 13 97 37 100 98 93 59
95 94

2 453.269 27 1 69 50 33 29 24 39 67 23 15 43 14 44 38 86 16 61 91 85 99 96 6 84 8 82 7
48 47 49 19 10 63 90 32 66 35 51 70 31 52 18 83 17 5 60 89

Total length: 890.61.
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